Compact operators whose adjoints factor through subspaces of lp
نویسندگان
چکیده
منابع مشابه
SMALL SUBSPACES OF Lp
We prove that if X is a subspace of Lp (2 < p < ∞), then either X embeds isomorphically into `p ⊕ `2 or X contains a subspace Y, which is isomorphic to `p(`2). We also give an intrinsic characterization of when X embeds into `p⊕`2 in terms of weakly null trees in X or, equivalently, in terms of the “infinite asymptotic game” played in X. This solves problems concerning small subspaces of Lp ori...
متن کاملHyperinvariant subspaces and quasinilpotent operators
For a bounded linear operator on Hilbert space we define a sequence of the so-called weakly extremal vectors. We study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors. Also we show that any quasinilpotent operator $T$ has an hypernoncyclic vector, and so $T$ has a nontrivial hyperinvariant subspace.
متن کاملAdjoints of Elliptic Cone Operators
We study the adjointness problem for the closed extensions of a general b-elliptic operator A ∈ x Diffmb (M ;E), ν > 0, initially defined as an unbounded operator A : C∞ c (M ;E) ⊂ x L b (M ;E) → xL b (M ;E), μ ∈ R. The case where A is a symmetric semibounded operator is of particular interest, and we give a complete description of the domain of the Friedrichs extension of such an operator.
متن کاملFinite dimensional subspaces of Lp
We discuss the finite dimensional structure theory of L p ; in particular, the theory of restricted invertibility and classification of subspaces of ℓ n p .
متن کاملAdjoints and Self-Adjoint Operators
Let V and W be real or complex finite dimensional vector spaces with inner products 〈·, ·〉V and 〈·, ·〉W , respectively. Let L : V → W be linear. If there is a transformation L∗ : W → V for which 〈Lv,w〉W = 〈v, Lw〉V (1) holds for every pair of vectors v ∈ V and w in W , then L∗ is said to be the adjoint of L. Some of the properties of L∗ are listed below. Proposition 1.1. Let L : V →W be linear. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2002
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm150-1-3